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In this paper we will describe a program written by Igor Kaganovich to
calculate ionization cross sections for collisions between projectile protons on
stationary hydrogen nuclei. The program can be easily modified to handle any
fully stripped projectile by just adjusting the potential for the heavier ions. The
general idea is to simulate the collision using classical trajectory calculations and
to sample many different simulations, seeing how often the electron ionizes and
then to obtain a probability. We will then present the results of the simulations
and compare them with experimental values.

We begin by discussing a few important points within the code without
referring to the code itself.

We determine whether the electron ionizes by looking at its energy values
and position with respect to the two nuclei after the collision:

If Vp(rp) >
v2

p

2
and rp < rt then a charge exchange has occured.

If Vt(rt) >
v2

t

2
and rt < rp then the electron remains in the target nucleus.

Here all values with a p are with respect to the projectile and those with
a t are with respect to the target nucleus. If neither of these conditions is
met we assume that the electron has ionized. The simplicity of this ionization
determination method is on the one hand convenient, but on the other hand
it does require that we run the simulation long enough so as to assure that
the result we determine is correct. This ends up slowing down the program for
highly charged projectiles or targets.

The simulation consists of a running Newton’s equations with the Runge
Kutta method given different sets of initial conditions. Because of conservation
of energy and momentum we only need to give four initial coordinates describing
the electron - the radius from the stationary nucleus, the two angles in spherical
coordinates, and a third angle between the rotational velocity vector and the
radius vector. We also set the impact parameter for the collision.

Determining the initial velocity of the electron is slightly tricky. The initial
radial velocity, vr, is calculated using conservation of energy:
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We use conservation of angular momentum, l = vβr, to find the rotational
velocity vβ :

The rough part is dividing up the radial and rotational velocities into each
one’s Cartesian components. We define α to be the angle between the vector
from the electron to the nucleus and the direction of the rotational velocity.
Thus in spherical coordinates the total initial velocity vector is: vβ cos(α)θ̂

vβ sin(α)φ̂
vr r̂


Now we use rotation matrices to rotate through both φ and θ in order to

switch from spherical to Cartesian coordinates:

 cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

  cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

  vβ cos(α)
vβ sin(α)

vr



=

 vr cos(φ) sin(θ) + vβ(cos(θ) cos(φ) cos(α)− sin(φ) sin(α))
vr sin(φ) sin(θ) + vβ(sin(φ) cos(θ) cos(α) + cos(φ) sin(α))

vr cos(θ)− vβ sin(θ) cos(α)


and this will be the initial total velocity vector.
Anyhow, there are two methods in which we can assign values to the initial

conditions. We can use a stochastic method where the conditions are chosen ran-
domly or we can pick values using a uniform distribution between the minimum
and maximum possible values for the conditions and then create a simulation for
every permutation of these parameters. If we do the latter method than we’ll
have to put weights on the probability calculation because if you pick values
of θ and φ randomly from 0 to π and 0 to 2π , this doesn’t leave you with a
uniform distribution of points on the surface of the sphere. Instead you are left
with clutters of points by the poles. Thus we will want to weigh every sampling
by sin(θ) so as to weigh down those angles which would have less probability
of being chosen randomly. The sin(θ) comes from using the microcanonical en-
semble for hydrogen like atoms. This is equivalent to creating a distribution
that is uniform in cos(θ) and this will distribute points uniformly around the
surface of the sphere like we want.

However, we must also divide each sampling by the average value of sin(θ)
from 0 to π so that the total possible probability still equals one. So in all, when
accumulating the probability calculation we weigh each trajectory with:

sin(θ)

1
π

π∫
0

sin(θ) dθ

=
π

2
sin(θ)
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We can do this for the stochastic method as well, or alternatively we can
create a random number generator that will give us a uniform distribution on the
surface of a sphere. We do this by simply picking a random number between −1
and 1 and then plugging it into the inverse cosine function to give a distribution
uniform in cos(θ).

Since we are ultimately interested in finding the ionization cross section,
every time a trajectory results in an ionization we add the following to the
running sum:

σ =
2πP (ρ)ρρmax

N
=

sin(θ)π2ρρmax

N

where ρ is the impact parameter and N is the number of total trajectories that
will be simulated. In the stochastic method, this is simply the amount of times
the program runs through the code, and for the unifrom mesh method, N is the
amount of permutations of initial conditions that we allow for. It is expected
that both methods should be equivalent when enough trajectories are used.

The factor ρmax

N replaces the dρ in the cross section integral. ρmax is chosen
at the approximate value of ρ for which the probability that the particle will
ionize becomes zero.
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Results 
 
Using a classical trajectory Monte Carlo (CTMC) simulation we calculated ionization 
and charge exchange cross sections for collisions of various ion projectiles on hydrogen 
and helium targets.  Below are the results for hydrogen, where all the cross sections are 
normalized.   

1 1
0.01

0.1

0

σ iz(
I nl

/Z
pa

0)2 /π

Velocity (a.u.)

 H+ Exp
 H+ CTMC
 5/3 Bohr

 
Figure 1  - This is a proton on hydrogen collision.  The maximum impact parameter for these runs 
was 5.5 au.  The experimental results come from [1,3].    
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Figure 2 – Normalized ionization cross sections of fully stripped ions on hydrogen.  The experimental 
results for He, Li, and C and O come from [1],[2], and [6] respectively.   
 
For most runs with hydrogen targets we used an initial separation distance of 25 au.  For 
the bigger ions such as oxygen and carbon this distance was increased when doing runs 
of lower velocities because the larger charge means that the projectile can start drawing 
in the electron from much farther away.   
 
The simulation results always underestimate the experimental results.  This is largely due 
to the fact that the classical simulation does not account for instances of ionization that 
result from quantum mechanical phenomena.  However, for the most part, both curves 
peak at around the same maximum velocity.  For velocities between 1.3 and 2.3 au our 
simulation seems to be a good approximation of experimental values, coming within 10% 
in the proton on hydrogen case.  A stochastic method of choosing initial coordinates for 
the simulation was used for these results and each case was approximated using 100,000 
trajectories (except for the proton runs where we used 150,000 trajectories).  The 
maximum value of the impact parameter for He, Li, C, and O was 5.7, 6.5, 11, and 12 au 
respectively.   



 
A good way to see if the simulation is running correctly is to compare it to the 5/3 Bohr 
approximation at high velocities [7]: 
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This approximation is essentially the maximum bound for cross sections using classical 
methods and it is only valid for high velocities.  Indeed, the graphs above show that the 
CTMC’s meet this line at the limit of high velocities.   
 
We also calculated charge exchange cross sections using the CTMC method: 
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Figure 3 – Charge exchange cross sections of fully stripped ions on hydrogen.  The experimental 
results are from [1] for H and He, [2] for Li, and [6] for C.     



We also tried some simulations using heavier projectiles, such as argon and gold ions.  
With highly charged ions as large as gold, it has been shown [17] that you can neglect the 
ion’s electrons’ contributions to potential and treat the projectile as if it were a fully 
stripped ion of the same charge.  With smaller ions like argon, the electrons surrounding 
the ion can have noticeable effect on the potential from the projectile so we used 
approximations of the potential such as this one, which was used for Ar+7: 
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and  and 18, 3, 1.3383, 0.8853,ion ionZ Z R b= = = = 1S =  3.96175.   
   
Here we show the normalized results of two Ar ions compared with some of our previous 
results: 
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Figure 4 – Ionization cross sections of some fully stripped ions and other heavier ions on atomic 
hydrogen.  The experimental values for the Ar ions were taken from [14]. 
  
For the most part the two Ar cross sections resemble the others in their basic shape and 
curvature.  For instance, notice the similarities between Li+3 and Ar+3.  One oddity is 
that the Ar+3 cross section does not approach the 5/3 Bohr limit at high velocities, unlike 
those of the other ions.  Another problem here is that the experimental results do not have 
the same basic shape as any of the others.  This is due to the large amount of ionization 
that occurs at low energies called auto-ionization that is only accounted for with quantum 
mechanic methods.  For all the simulations we used a maximum impact parameter of 10 
au.  For most points we ran 100,000 trajectories but for lower velocities of the Ar+3 ions 
the simulation was extraordinarily slow so we did up to half as many.              
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Figure 5 – Normalized charge exchange for Ar+3 ions on hydrogen.  Experimental values from [14].   
 
 
Helium Targets 
 
We altered the hydrogen code slightly to approximate helium target cross sections as well.  
Since there are two electrons their interactions with one and another must be taken into 
consideration.  We made use of Shevelko’s approximation of the total potential of the 
target (the two protons and one electron), 
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Where β =1.65 and ζ = 2 .  
 
Also, since there are two electrons that can be ionized, the total cross section is multiplied 
by a factor of two.  The ionization potential for neutral He is 0.904 au.   
 
Below are results for the helium targets: 



 

1 10
0.01

0.1

1

σ(
I nl

/Z
pa

0)2 /π

Projectile Velocity (a.u.)

Experiment         CTMC    
 H+                 H+

 He2+              He2+

 Li3+                Li3+

Figure 6 – The normalized ionization cross section for fully stripped ions on Helium targets.  
Experimental values come from [4,5].  
       
Again, the CTMC results all converge to 5/3 Bohr limit (not shown) at high velocities. 
 



1 10 100

1E-3

0.01

0.1

σ(
I nl

/Z
pa

0)2 /π

Projectile Velocity (a.u.)

 5/3 Bohr
Experiment          CTMC         

 C6+                 C6+       
 O8+                 O8+

 Auq+              Au54+

 Iq+                  I25+ 

  
Figure 7 – Ionization cross sections for larger fully stripped ions and even larger non-fully stripped 
ions on He targets.  The experimental data (which doesn’t seem to be calibrated properly) is from [8-
13] for O and C, and I and Au are from [15] and [16] respectively.   
   
This is a sampling of some the larger charges we worked with.  For the gold and iodine 
simulations, we treat the projectiles as if they were fully stripped ions of the same charge.  
We are able to ignore the effects of the electrons in these projectiles because almost all 
ionization occurs at impact parameters for away from the target [17].  It was hard to find 
experimental data and the data we did find do not seem to be too reliable as you may be 
able to tell by looking at Fig. 7.  The experimental data includes many different charged 
ions as opposed to our data which shows just one charged ion over many different 
velocities.  The three gold ions shown have charges of 24, 43, and 54, whereas the Iodine 
ions have charges of 5, 10 (the highest), and 16 (the lowest) at a velocity of 2 in au and 9, 
15, and 25 (from lowest to highest) at a velocity of 3.16.  The maximum impact 
parameter for C, O, Au, and I was 6, 8, 30, and 20 au respectively.  For the Au 
simulations we used an initial separation distance of 65 au instead of the usual 25 au 
because the large charge seemed to be affecting the electron from much farther away.         
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Figure 8 – Charge exchange cross sections of ions on He targets.  Experimental data for H and He 
are from [1] and for C is from [6]. 
 
As you can see from the graph, the simulation matches experimental results nicely in 
velocities between and 1 and 3 au.   
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